paraboloid antenna - significado y definición. Qué es paraboloid antenna
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es paraboloid antenna - definición

QUADRIC SURFACE OF SPECIAL KIND
Paraboloid of revolution; Hyperbolic paraboloid; Circular paraboloid; Elliptic paraboloid; Hypar; Parabolloid; Elliptic Paraboloid; Pringle shape; Paraboloids
  • A hyperbolic paraboloid with lines contained in it
  • A hyperbolic paraboloid with hyperbolas and parabolas
  • elliptic paraboloid, parabolic cylinder, hyperbolic paraboloid
  • [[Polygon mesh]] of a circular paraboloid
  • Circular paraboloid
  • [[Pringles]] fried snacks are in the shape of a hyperbolic paraboloid.

antennule         
  • Cutaway diagram of a barnacle, with antennae highlighted by arrow
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • Terms used to describe shapes of insect antennae
  • Olfactory receptors (scales and holes) on the antenna of the butterfly ''[[Aglais io]]'', electron micrograph
  • Electron micrograph]] of antenna surface detail of a wasp ''([[Vespula vulgaris]])''
APPENDAGES USED FOR SENSING IN ARTHROPODS
Antennule; Antennomere; Flagellomere; Antenna (Biology); Antennomeres; Antennal; Antennary; Antennation; Antenna (arthropod anatomy); Flagellomeres; Antennae (biology); Geniculate antenna; Pedicel (antenna); Antenna of insects; Antennules; Insect antenna; Antenna (anatomy); Antenna (insect); Arthropod antennae
[an't?nju:l]
¦ noun Zoology a small antenna, especially either of the first pair of antennae in a crustacean.
Antennal         
  • Cutaway diagram of a barnacle, with antennae highlighted by arrow
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • Terms used to describe shapes of insect antennae
  • Olfactory receptors (scales and holes) on the antenna of the butterfly ''[[Aglais io]]'', electron micrograph
  • Electron micrograph]] of antenna surface detail of a wasp ''([[Vespula vulgaris]])''
APPENDAGES USED FOR SENSING IN ARTHROPODS
Antennule; Antennomere; Flagellomere; Antenna (Biology); Antennomeres; Antennal; Antennary; Antennation; Antenna (arthropod anatomy); Flagellomeres; Antennae (biology); Geniculate antenna; Pedicel (antenna); Antenna of insects; Antennules; Insect antenna; Antenna (anatomy); Antenna (insect); Arthropod antennae
·adj Belonging to the antennae.
Antennule         
  • Cutaway diagram of a barnacle, with antennae highlighted by arrow
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • 100px
  • Terms used to describe shapes of insect antennae
  • Olfactory receptors (scales and holes) on the antenna of the butterfly ''[[Aglais io]]'', electron micrograph
  • Electron micrograph]] of antenna surface detail of a wasp ''([[Vespula vulgaris]])''
APPENDAGES USED FOR SENSING IN ARTHROPODS
Antennule; Antennomere; Flagellomere; Antenna (Biology); Antennomeres; Antennal; Antennary; Antennation; Antenna (arthropod anatomy); Flagellomeres; Antennae (biology); Geniculate antenna; Pedicel (antenna); Antenna of insects; Antennules; Insect antenna; Antenna (anatomy); Antenna (insect); Arthropod antennae
·noun A small antenna;
- applied to the smaller pair of antennae or feelers of Crustacea.

Wikipedia

Paraboloid

In geometry, a paraboloid is a quadric surface that has exactly one axis of symmetry and no center of symmetry. The term "paraboloid" is derived from parabola, which refers to a conic section that has a similar property of symmetry.

Every plane section of a paraboloid by a plane parallel to the axis of symmetry is a parabola. The paraboloid is hyperbolic if every other plane section is either a hyperbola, or two crossing lines (in the case of a section by a tangent plane). The paraboloid is elliptic if every other nonempty plane section is either an ellipse, or a single point (in the case of a section by a tangent plane). A paraboloid is either elliptic or hyperbolic.

Equivalently, a paraboloid may be defined as a quadric surface that is not a cylinder, and has an implicit equation whose part of degree two may be factored over the complex numbers into two different linear factors. The paraboloid is hyperbolic if the factors are real; elliptic if the factors are complex conjugate.

An elliptic paraboloid is shaped like an oval cup and has a maximum or minimum point when its axis is vertical. In a suitable coordinate system with three axes x, y, and z, it can be represented by the equation

z = x 2 a 2 + y 2 b 2 . {\displaystyle z={\frac {x^{2}}{a^{2}}}+{\frac {y^{2}}{b^{2}}}.}

where a and b are constants that dictate the level of curvature in the xz and yz planes respectively. In this position, the elliptic paraboloid opens upward.

A hyperbolic paraboloid (not to be confused with a hyperboloid) is a doubly ruled surface shaped like a saddle. In a suitable coordinate system, a hyperbolic paraboloid can be represented by the equation

z = y 2 b 2 x 2 a 2 . {\displaystyle z={\frac {y^{2}}{b^{2}}}-{\frac {x^{2}}{a^{2}}}.}

In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward).

Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second parabola.